1/10/2025

Team 515: Haptic Robot

Kemani Harris; Aaron Havener; Jacob K. Hernandez; Aliya Hutley; Cade Watson FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee, FL. 32310

Team 515

Abstract

Team 515

ii

Disclaimer

A portion of the editing of this document was completed with OpenAI's ChatGPT. This currently includes the condensing of team-generated writing. Specific usage of this is noted. All text has been reviewed by the team and edited if needed—.

Acknowledgements

Team 515 would like to thank Dr. Carl Moore, the National Science Foundation, and the National Research Institute for sponsoring this project, which has furthered the team's education and experience in mechanical design.

Team 515 would also like to thank Dr. Carl Moore and Dr. Shayne McConomy of the FAMU-FSU College of Engineering for advising the team both technically and instructionally.

Team 515

Table of Contents

Abstract	1
Disclaimer	2
Acknowledgements	4
Table of Contents	4
List of Tables	5
List of Figures	5
Chapter One: EML 4551C9	6
1.1 Project Scope9	6
1.2 Customer Needs	8
Investigating Needs	8
Explanation of Results	θ
1.3 Functional Decomposition	1
Introduction <u>7</u> +	1
Data Generation and Functional Hierarchy	2
Connection To Systems	4
The Functional Cross Reference Table <u>12</u> 4	5
Smart Integration	8
Team 515 2025	v

Action and Outcome		
Function Resolution		
1.4 Targets & Metrics		<u>18</u> 21
Critical Targets & Metrics		
Generation of Critical Metric	es and Targets	
Path Parameter Acquisitio	n and Handling	
Position Sensing		
Comparison of Data and E	rror Calculation	
Calculation of Actuation I	Data	
Steering Actuation		
Output of Motion		
Receiving Power		
Measurement and Validation	of Critical Metrics	
Summary of Targets & Metr	ics	
1.5 Concept Generation		
Concept Generation Tools		
Concept Fidelity		
1.5.1.1 Medium Fidelities		
Projectile Trajectory Game	e (Button-Controlled)	
Team 515	2025	vi

Racecar Game (Potentiometer-Controlled)	<u>28</u> 32
Projectile Trajectory Game with PID Control	<u>29</u> 32
Roller Coaster Potential Energy Study	<u>29</u> 32
Gridded Paper Curve Plotting	<u>29</u> 33
1.5.1.2 High Fidelity	<u>30</u> 33
Optimal Path Simulation for Racecar Game	<u>30</u> 33
Long Exposure Drawing Guessing Game	<u>31</u> 34
Projectile Trajectory Game	<u>31</u> 34
Waveform Interaction Study	<u>32</u> 35
Appendices	<u>40</u> 36
Appendix A: Code of Conduct	<u>40</u> 37
Appendix B: Work Breakdown Structure	<u>48</u> 4 3
Appendix C: Target Summary	<u>63</u> 58
Appendix D	<u>64</u> 59
References	<u>88</u> 80

List of Tables

Table 1: Customer Needs		
Table 2: Functional Cross	Reference Table	
Table 3: Target Summary		
Table 4: Critical Targets a	nd Metrics	
Team 515	2025	vii

Table : Team Roles	<u>12</u> 32
Table : Work Breakdown Structure	<u>18</u> 37
Table 7: Target Summary	<u>5352</u>

List of Figures

Team 515

Chapter One: EML 4551C

1.1 Project Scope

Project Description

Team 515 is tasked with designing an educational device to demonstrate the use of Continuous Variable Transmission (CVT) technology in robotics. The device aims to engage student audiences by highlighting the smooth movement characteristics of CVTs. If significant

Team 515

technological development is made, the devices could serve as a subsystem in a larger haptic feedback collaborative robot (cobot) for remote tele-operation (OpenAI, 2024). (No Change)

Key Goals

The main goal of this project is to <u>utilize CVT technology to engage with potentially</u> <u>STEM-curious students by outputting output</u> a desired two-dimensional path<u></u> that engages students. The <u>working principle of the CVT</u> technology involved in the movement of the device <u>used</u> is intended to be displayed and explained, while its effectiveness <u>in producing clear motion</u> is intended to be entertaining and thought provoking. The device is also intended to highlight the autonomous characteristics of robots, so a single input<u>provided by the user</u> is desired to produce the path. <u>Once the input is provided by the user</u>, the desired path can be drawn autonomously by <u>the device</u>. The device's <u>size output area</u> is intended to be <u>large enough maximized</u> to <u>maximize</u> <u>classroom engagement</u>, while the overall device footprint is intended to be minimized for <u>transportability.engage with a typical classroom size</u>.

Intended Markets

The primary market for the device is intended to be STEM educational institutions (schools, museums, research, etc.). Examples include public and private schools, the Challenger Learning Center, the National High Magnetic Field Laboratory, and outreach programs such as Young Engineers Tallahassee. Secondary markets <u>involve ndustries where haptic robotics can be</u> <u>beneficial, such as hazardous environments</u>include industries where haptic robots could be implemented, such as hazardous environments (e.g., space, nuclear, or underwater environments), remote surgery, and VR gaming. <u>Given that the device is a smaller part within a</u> Team 515 2025 2

larger cobot project it is meant to showcase further applications of CVTs within haptic robotics. Tackling both markets will further enhance the education and development of CVTs in robotics.

Assumptions

The assumptions team 515 will be operating under during the project include:

- While the sponsored research project involves <u>applications in</u> haptics, the device <u>itself</u> is not a haptic device (will not incorporate physical human interaction/interface).
- While there is no physical control of the device, it will incorporate a user interface for choosing desired motion output.
- The device will output planar/2D motion_using a Continuously Variable Transmission.
- Existing motor and control hardware are allowed.
- Use of existing control methods are allowed.
- Device will build on past prototypes/designs
- Access to conventional sources of electricity is available.

Stakeholders

Stakeholders who would benefit from the success of this project include:

- Dr. Shayne McConomy
- Dr. Carl Moore
- The National Science Foundation (NSF)
- The National Research Institute (NRI)

Team 515

2025

- Shape-Based Remote Manipulation (SBRM), consisting of Northwestern University and the FAMU-FSU College of Engineering
- •___Prairie View A&M University, a host of a similar capstone project
- Human Augmentation via Dexterity Engineering Research Center (HAND ERC)

1.2 Customer Needs

Investigating Needs

Once the scope of this project was established, the team had to identify the customer's needs. To do this, various questions were asked of the assigned customer, Dr. Moore. The proposed questions were formulated to get a general concept of what the customer anticipated the design and characteristics of the product to be like. After recording the responses, the team then discussed ways to answer the customer's needs in the design. The table below outlines the questions, answers, and interpreted needs

Table	1:	Customer	Needs
-------	----	----------	-------

Questions	Provided Answers	Interpreted Need
If this is an educational tool, what audience are you intending to reach with this device? (elementary, middle, high, college)	High schools.	Any mathematical concepts plotted are within a high school educational level.
How large of an audience do you intend to display the device to at a time?	30 High Schoolers.	The device is large enough to display to 30 high schoolers at a time.

Team 515

2025

Where do you intend to display the device?	Science museums and classrooms.	The robot may require a layer of protection to prevent damage from over- excited/irresponsible viewers
How do you intend to transport the device?	By car.	The device can fit into a car to be transported.
How much time do you expect to have with the audience?	An hour.	The robot can be easily run and reset (if applicable) to accommodate this schedule
Would you discuss smaller steps of achieving the output to the audience? Would you like to focus on displaying the steps as well as the output?	Both steps and output are important. Demonstrate this as a robot to help students understand mathematical concepts and engineering concepts. Some concepts may be too complicated.	Given the robot will be demonstrated to a high school audience within an hour, basic mathematical/engineering concepts can be briefly explained. This may also depend on the device's running time.
What is the most important aspect of the device to you?	An endpoint following a curve.	The device can follow a curve.
Would you discuss and then showcase? Or would you like to showcase while you discuss? Would you like the device to stop at various steps for explanation?	Constant movement is desired.	The device can transition continuously from input to output.
It has been discussed that a 10x10 footprint is an acceptable size. Do you have a target output area?	The 10x10 footprint is not a packaging area footprint. The footprint is the output space, which is now 8.5 in x 11 in.	The device can output an area of 8.5 in x 11 in.

Team 515

6

How much student interaction are you seeking? Do you intend for immediate student interaction/interface?	Direct student interaction is not an immediate concern, but changing of mathematical parameters is desired.	While direct student interaction may be incorporated into the design, the input parameters are the priority.	
What do you dislike about similar models?	Former models or attempts were designed to be too rigid.	The product's mechanism will be adjustable.	

Explanation of Results

Team 515 engaged with the customer during discussions and follow-up emails to clarify their needs for an educational tool for high school students. The customer intends to use this device in science museums and classrooms to demonstrate mathematical and engineering concepts to groups of around 30 students at a time. The device must fit into a car for easy transportation, designed to run continuously for approximately one hour. The primary focus is on showcasingdisplaying the process and output, with both steps and the endpoint (following a curve) being crucial elements. Although direct student interaction is not the main priority, the ability to change mathematical parameters is essential. The device's footprint will be 8.5 inches by 11 inches, and it needs to be simple enough for brief explanations while demonstrating core concepts.-___

Team 515

1.3 Functional Decomposition

Introduction

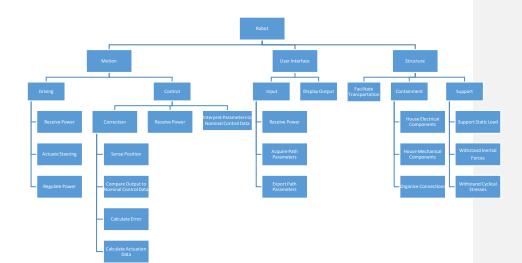
The CVT robot's functionalities will now be explored using functional decomposition. Functional decomposition is a systems approach to understanding the lowest level functionalities required for a solution to an engineering problem. These functionalities are customer driven and reside under larger systems. Determining such low-level functionalities aids in identifying key systems that will work in tandem to solve the desired problem. Identifying functionalities will also aid in determining benchmarking factors for selecting an acceptable design.

Data Generation and Functional Hierarchy

Team 515 met multiple times to brainstorm functionalities. The first brainstorming session involved confirming the most important customer need – continuous, precise, and customizable two-dimensional output. This allowed the team to discuss a series of high-level actions from start to finish. These high-level actions involve inputting a desired set of curve parameters, creating a nominal set of movement parameters, beginning actuation,

Team 515

2025



8

validating movement, and correcting movement. All these actions are occurring while the output is being displayed. This allowed for the realization of three main systems. Further brainstorming sessions refined the content within these three systems. The refined hierarchal structure of the systems, subsystems and functions is shown below.

9

Figure 1: Functional Hierarchy Chart

The functional hierarchy chart highlights three main systems: structure, user interface, and motion. The structure system plays a key role in maintaining the device's integrity against movement forces, provides packaging of components, and facilitates transport of the device.

The user interface system handles interactions with the user. This was realized from the customer need for education and interactivity. It manages user-defined path parameters and

Team 515

displays the desired path to the user. As this was identified as the most important need for the customer, output functionality is left simplified to allow for an open solution space.

The motion system is responsible for processing and initiating movements that will be displayed as output. This involves realizing the path parameters taken from the user interface in to control data, actuating motion, and controlling the motion to match that of the input. A major customer-driven need for a continuous transition between input and output realized this system.

Connection To Systems

The device has 3 main systems: structure, motion, and user interface. Each system has identifiable subsystems that aid in achieving its desired purpose.

The structural system involves two subsystems – support and containment. The support subsystem involves ensuring the device's ability to withstand static and dynamic loading and prevent effects from inertial forces, such as unwanted translation or rotation. The containment subsystem involves general packaging, which includes accepting mechanical and electrical components, and organizing connections. These two subsystems aid in contributing to each other's success and provide clear identifiers of success in meeting the customer's need for output visibility. If the device is not well packaged, for example, unwanted mechanical forces may not be mitigated. Loose mechanical components such as motors could create vibrations. If the devices are not well supported, packaging may come undone. The optimization of packaging and support subsystems could also aid in facilitating transportation. A densely packed and light structure could allow for the device to be carried, lifted, or rolled to its destination much easier.

The motion system involves two subsystems – control and driving. The control subsystem involves determining the necessary actuations to take to achieve the desired output Team 515 2025

motion. This includes creating nominal control parameters, sensing position, comparing it to the nominal, calculating error, and setting the correct actuation data. The drive subsystem involves performing the necessary actuations to achieve the desired output motion based off the actuation data received from the control subsystem. These two subsystems are key in showcasinghighlighting the effective movement characteristics of CVTs. Without the control subsystem, the device would have no logic to perform the desired movement. Without the driving system, the device would not be able to physically move a point in space. Optimizing these two together will aid in gaining smooth, precise two-dimensional output, which will clearly be displayed to the audience.

The user interface system is comprised of a smaller input subsystem. This allows for the acquisition, storage, and communication of desired output path parameters to the rest of the device. The function of displaying output may become a subsystem in future work. As previously stated, it was left at a high level of functionality to allow for an open solution space. Once a solution is determined, however, displaying the output will need lower-level functionality. The relationship between the input subsystem and the output functionality of the device is of key importance to its educational worth. Without an input, a curve could not be set or changed, severely reducing interactivity. Without a proper output, the desired curve may not be realized, also reducing interactivity. Input and output functionality are important to the project's success and should work together to increase audience interactivity.

Team 515

2025

The Functional Cross Reference Table

Each of the lowest level functions is then compared against the systems to rank each function's importance in system relationship. This is shown in the table below. An "X" is marked under a system (column) that a function relates to (row)—<u>.</u>

Table 2: Functional Cross Reference Table

	Systems			
Functions	User Interface	Motion	Structure	
Receive Power	X	Х		
Acquire Path Parameters	х			
Export Path Parameters	Х	Х		
Display Output	X	Х	Х	
Sense Position		Х		

Team 515

2025

			[]
Compare Output to	Х	Х	
Nominal Data	А	А	
Calculate Error		Х	
Calculate			
Actuation Data		Х	
Interpret			
Parameters to			
Nominal Control	Х	Х	
Data			
Actuate Steering		Х	Х
Regulate Power		Х	
Support Static			v
Load			Х
Withstand Inertial		Х	Х
Forces		Α	Δ

Team 515

Withstand Cyclical Stresses		Х	Х
Organize Connections			х
House Electrical Components	х	Х	х
House Mechanical Components		Х	х
Facilitate Transportation			Х

Smart Integration

The interaction between the systems is key to the overall functionality of the device. Each system connects to some other system between lower-level functions. The realization of this can identify areas for system integration and optimization of design parameters to ensure that all systems work holistically with each other.

Team 515

2025

From the cross-reference table, display output functionality has the most system relations. It involves parameters defined from the user interface, processed by the control subsystem, and realized by the motion subsystem. The realized motion directly affects the actual structure, while showing results, as dynamic forces are formed. This highlights a clear path from input to output through every system and implies that the design of each system will affect the output of the device. This is useful information when prototyping and testing because it is likely that a design choice may affect the output motion.

The realization of other areas of integration can be seen from functions of lower relationships. The function of exporting user determined path parameters, interpreting parameters to control data, and comparing the output to the nominal data involves both the user interface and the motion system. Data flows from the user interface, which is interpreted by the control subsystem, and is realized as actuation data. This means that proper communication between both the user interface and the motion system through the control subsystem is of importance. Streamlining where control and user data collection take place may help with this. Control and data collection may be done within one software environment, for example.

Motion and structure systems are also related. The ability of the structure to withstand inertial forces and cyclical stresses determines its effectiveness. However, this also affects the ability of the device to control and actuate motion. The structure failing due to its inability to withstand mechanical loading may add additional loading to mechanical components. Actuators such as electrical motors also have mechanical limits and may not operate correctly if this occurs. This implies that the housing of mechanical components is helped by the structural system and affects the motion system, as improper housing could lead to additional mechanical

Team 515

2025

stresses and vibrations. It is also important to note that the ability to house electrical components affects all systems, as motion and user interface may include electrical systems. The structure can therefore take form with other systems. Sizing components through simulations and ample testing can help identify mounting needs. Testing mounting needs and motion characteristics can help improve this relationship.

Action and Outcome

The primary action of this project is to highlight the heightened resolution and accuracy that a Continuous Variable Transmission (CVT) based robotic device can execute. The customer needs this device to be an educational tool for secondary education aged students to show the capabilities of robotics and how far robotics development has come. The device powers on, reaching the appropriate angular velocity (ω) and torque to compensate for the contact preload, allowing the cylinder to drive the wheels through frictional contact, with the rolling axes initially parallel. It then receives a set of instructions that define a path function and dimension parameters within the bounds of the output medium. The software converts these instructions from output area coordinates into corresponding wheel distance parameters. These parameters are communicated to the microcontroller, which calculates the steering angle (ϕ) required for the friction-driven wheels to achieve the desired distance at a predetermined velocity, using the relation v = rootan(ϕ). Finally, the device executes the list of steering angles to accurately reproduce the initial path function and dimension parameters onto the output medium.

Team 515

2025

Function Resolution

It is important to discuss the resolution that describes the current functionality of the design. From the current customer needs, it has been desired that a continuous transition from user defined path parameters to an output curve is necessary. This process will highlight the unique movement characteristics of CVTs. The knowledge of this need led to the current understanding of functionality, with the understanding that the most important basic functionality is setting movement data, actuating movement, controlling that movement, and displaying it. The functionality of the device, therefore, relies on data transference. The user interface allows desired output data to be generated, recorded, and exported in the form of path parameters. The motion system then receives this data as control data with the formation of nominal control variables. The control data is then realized as movement data through comparisons with the nominal control variables. The motion. The structure system ensures that the motion system and user interface system can effectively communicate this data by proper housing and mechanical support.

Team 515

2025

1.4 Targets & Metrics

To ensure functionality outlined during the functional decomposition process, metrics were applied to each function to provide a quantitative method of validating performance. When applicable, a target value was added. The team's functional hierarchy and cross-reference table were used to establish these, drawing from customer needs and feasible technical goals. The metrics and targets assigned to each function are detailed in both the table below and Appendix C.

Function	Metric	Target
Acquire Path Parameters	Time Delay Between	
Export Path Parameters	Interface and Motion	0.5-1 sec
Interpret Parameters to Nominal Control Data	Systems (sec)	
	Translation Measurement	
Sense Position	Error	< 0.05 in
Compare Output to Nominal	Desired Control Time	0.5 sec
Control Data	Constant (sec)	0.5 800
Calculate Error	Desired Steady State	± 0.1 in
	Output Error (in)	
Calculate Actuation Data	Frequency of New Data Generation (Hz)	-

Table 3: Target Summary

Team 515

2025

	Maximum Actuation	
Actuate Steering	Torque (lb*ft)	-
	Desired Steering	
	Coefficient of Kinetic	0.215
	Friction	
Display Output	Display Output area (in^2)	8.5 in x11 in
	Desired Completion Time	60 sec
	(sec)	
Withstand Static Load	Total Mass (lb<u>lb.</u>)	22 lb<u>lb.</u>
Withstand Inertial Forces	Ratio of Base Mass to	2
	Linkage Mass	2
Withstand Cyclical Stresses	Life Cycle (years)	5 years
House Mechanical Components		
House Electrical Components	Available Volume (in^3)	32 in x 28 in x 55 in
Organize Connections		
Facilitate Transportation	Total Mass (lb<u>lb.</u>)	22 lb lb.
Receive Power	Input Voltage (V)	120V AC
Team 515	2025	1

Regulate Power	Outpu
----------------	-------

tput Voltage Range (V)

 $5V\ to\ 24V\ DC$

Critical Targets & Metrics

The CVT educational device, designed primarily for high school educational environments, involves several critical functionalities that ensure basic operation. The following table provides a summary of these critical functions and their associated metrics and targets.

Table 4: Critical Targets and Metrics

Function	Metric	Target
Receive Power	Input Voltage (V)	120 V
Acquire Path Parameters		
Export Path Parameters	Time Delay Between Interface	0.5-1 sec
Interpret Parameters to Nominal	and Motion Systems (sec)	
Control Data		
Sense Position	Translation Measurement Error	± 0.05 in
Compare Output to Nominal	Desired Control Time Constant	0.5 sec
Data	(sec)	0.5 500
Calculate Error	Desired Steady State Output	+ 0.1 in
	Error (in)	± 0.1 m
Calculate Actuation Data	Frequency of New Data	100 kHz
	Generation (Hz)	100 KIIZ

Team 515

2025

Actuate Steering	Maximum Actuation Torque	
	(<mark>lb<u>lb.</u>*ft)</mark>	-
	Desired Steering Coefficient of	0.015
	Kinetic Friction	0.215
Display Output	Display output area (in^2)	8.5 in x 11 in
	Desired completion time (sec)	60 sec

Generation of Critical Metrics and Targets

The functions, metrics, and target values above were deemed critical using the previous discussion of the basic flow of information between the major systems (the generation of path data and the transformation of path data into control, actuation, and output data).

Path Parameter Acquisition and Handling

To measure the functionality of receiving, exporting, and interpreting path parameters, the metric of time delay can be used, as a quantifiable time between user input and motion will automatically ensure these functions are completed. This is targeted to be 0.5-1 sec to provide a customer driven efficient experience. It is important to note that this may be changed if a more reasonable value is determined with specific hardware.

Position Sensing

The metric involved with sensing position is critical in controlling motion. Without the knowledge of a current position, a new position cannot be realized. The necessary sensor would be a passive, proprioceptive sensor because it will be measuring values internal to the robot and Team 515 2025 21

will be able to do so by measuring ambient environmental energy as opposed to emitting energy and measuring a reaction. The target for accuracy of sensing the robot's position is expected to be within 0.05 inches of the actual position. This was determined based on research of product specifications of a possible sensor to use for measurement. It is also more accurate than the required level of accuracy stated by the customer. A nominal position value for the robot will be determined analytically.

Comparison of Data and Error Calculation

Once a position is sensed, that sensed data and path data are expected to be compared together to produce control data. If accurate control data has been created, then some mitigated steady state error should be present. The steady state output error quantifies the control subsystem's ability to quantify errors from this comparison. This was determined to be ± 0.1 in and was specified by the customer. The time constant required to achieve this error measures the efficiency at which sensed data and nominal path data can be compared. This was determined to be 0.5 sec to provide the efficient, accurate motion needed by the customer. However, this is expected to change with hardware, and a more realistic value will likely bebe applied.

Calculation of Actuation Data

After control data has been created, actuation data is generated at a rate of 100kHz after calculation. The ability of the motion system to generate actuation data efficiently to match the generation of control data can be used to quantify the extent to which this functionality is completed. The motion system's ability to generate actuation data efficiently to match the generation of control data can be used to quantify how much this functionality is completed. If actuation data is not generated efficiently, a bottleneck of information flow will occur. Therefore, Team 515 2025 22

the frequency of new actuation data generation can be used to determine the extent of this bottleneck. No value has been determined, as this is hardware specific. A specific quantity will eventually be realized.

Steering Actuation

After actuation data is generated, actuation can occur. As this is a physical action, physical metrics can be used to quantify if this action can occur. These were determined by realizing the limiting conditions present in a CVT. The desired steering coefficient of friction and the maximum actuation torque determined by it are critical to the project, because if these are not met, steering may not be able to occur. The desired steering coefficient of kinetic friction is critical. If friction is too low, accurate motion may be lost due to excessive slip. However, if friction is too high, not enough slip can be generated, preventing steering. Therefore, two extremes were taken and averaged - oiled steel on oiled steel for a low friction situation and rubber on wet concrete for a high friction application (Moebs et al., 2016). This averaged value was determined to be 0.215. Note that wet concrete was used instead of dry concrete, as dry concrete was determined to have too high friction. The torque required to steer the wheels under this average condition is important to determine, as insufficient torque will result in loss of steering. This value was left to be determined with high fidelity simulation. This was due to other loading conditions that are unknown at this time and will be determined once some high fidelity concepts are generated. This was due to other loading conditions unknown and will be determined once high-fidelity concepts are generated.

Team 515

2025

Output of Motion

Displaying output is critical to the project because it determines the ability of the device to engage with students. The output area was deemed a critical method of measuring this functionality, as it was specified by the customer and will affect the audience size. This has a target value of 8.5 in x 11 in but may change if needed. It is also important to measure the efficiency with which output is displayed, given the time constraints specified by the customer. The total path completion time was then created as a metric with a target value of 60 seconds to maintain interaction with 30 individuals within a one-hour period.

Receiving Power

For the data flow to occur, power must be received to components such as actuation and control hardware. The input electrical voltage is then used as a metric to gauge if power can be supplied. This was determined to be the standard 120V AC standard voltage found in North American infrastructure. This ensures compatibility with common power outlets in schools and museums.

Measurement and Validation of Critical Metrics

To measure and validate the critical functions, metrics and targets for the team's device, a series of specific testing and validation methods will be employed. These methods will ensure the design meets the functional requirements and performs reliably in educational settings.

To test the handline of path parameters, the time delay between user input and motion initiation can be measured using an integrated timer. The target of 0.5–1 second ensures quick responsiveness, critical for maintaining engagement in a classroom demonstration. This can be validated by conducting timed response tests with varying input conditions and ensuring the

2025

Team 515

system consistently meets the target time. A software environment can be created and timed runs can be performed.

To test the device's ability to sense position, a position sensor can be used to measure the current location of the device in real time. This can be validated in software by a collection of positions over time. The sensed data can be compared to the desired path data, and error can be measured. This can be done physically by plotting test curves and measuring their deviation, or by creating a software environment that tracks control data over time. This control data can be compared over time to determine if the steady state error reaches the desired value. Additionally, the software environment can be utilized to track the time necessary to reach a desired steady state error—

To validate the steering ability of the device, physical and virtual testing environments can be created. A virtual computer aided design (CAD) model can be simulated with proper material values to determine the torque necessary to make movements. This can be done iteratively with new material combinations and motor specifications to achieve better target values. Physical validation can be performed by running tests with varying loads and materials and analyzing the error in the output (as explained earlier). The steering coefficient of kinetic friction could be measured using a tribometer or alternatively through a manual friction test during prototyping utilizing a spring scale. The steering coefficient of kinetic friction could be measured using a tribometer or through a manual friction test during prototyping using a spring scale.

The robot's ability to trace a visible path within an 8.5 in x 11 in area will be verified by measuring the output area with a ruler or similar tool. This can be done in tests where a rectangle

2025

Team 515

is drawn around the working boundary, and the rectangle is measured. Additionally, the path completion time of 60 seconds will be validated through timed trials to ensure the device can engage an audience.

A multimeter will be used to verify the 120V AC input voltage for Receiving Power. The regulated output voltage, which aims to produce power between 5 and 24 V DC, will be tested across several components to verify reliable and secure power delivery while maintaining compatibility with normal classroom outlets.

Summary of Targets & Metrics

A comprehensive list of all the project's targets and metrics can be found within Appendix C. As prototypes are developed and tested, some targets may be refined to reflect realworld conditions. These targets serve as performance benchmarks, ensuring alignment with customer objectives and managing project costs. While subject to adjustment, they provide a clear framework for tracking progress and guiding design decisions.

1.5 Concept Generation

Concept generation is a critical phase in the design process, as it fosters the development of innovative ideas that can address complex problems effectively. By leveraging a range of concept selection techniques, our team was able to craft a broad array of distinctive ideas. Combining our targets and constraints, we ultimately generated a list of 100 potential concepts for the project, as detailed in Table 1 of Appendix E.

Team 515

2025

27

Concept Generation Tools

To spark and refine ideas, the team employed various tools, including brainstorming, SCAMPER, and a morphological chart. We started concept generation within our Sponsor's Office, creating a collaborative space where everyone could contribute freely, facilitating an inclusive atmosphere for exploring diverse ideas that could meet the essential functions identified in the project's functional decomposition.

The team created a morphological chart to map significant functions derived from the functional decomposition. By organizing various categories and their corresponding options in this structured chart, we systematically combined options from different categories various categories, leading to unique design configurations. This chart is shown in Table of Appendix E.

Finally, team members used SCAMPER and Biomimicry methods to explore other unique characteristics that might enhance the final design. SCAMPER expands on existing ideas by using actions represented in its acronym: Substitute, Combine, Adapt, Modify (Magnify, Minify), Put to another use, Eliminate, Rearrange, and Reverse. Biomimicry, on the other hand, draws inspiration from natural forms and functions found in plants and animals.Biomimicry, however, draws inspiration from natural forms and functions found in plants and animals.

Concept Fidelity

To streamline concept selection, the team identified five medium-fidelity concepts and four high-fidelity concepts.

1.5.1.1 Medium Fidelities

To evaluate key features of our design while staying within the project constraints, we selected medium-fidelity concepts that highlight specific functions without fully integrating all

Team 515 2025

target features. Each of these concepts has been tailored to test certain aspects of the CVT system, user interaction, and device control, providing us with valuable insights before moving to high-fidelity models.

Projectile Trajectory Game (Button-Controlled)

This concept centers on a simple projectile trajectory game using an external endpoint friction contact drive. It allows users to select from a set of button options to adjust launch parameters, demonstrating basic user control and feedback. The system utilizes nylon wheels on an aluminum cylinder, with an inverted crank linkage to adjust trajectory angles. This medium-fidelity prototype aims to test the feasibility of friction contact for maintaining control under varying conditions, as well as to evaluate the responsiveness of the button-controlled interface. This medium-fidelity prototype aims to test the feasibility of friction contact for maintaining control under controlled interface.

Racecar Game (Potentiometer-Controlled)

This version of the Racecar Game uses an internal endpoint friction contact drive and a linear/string potentiometer with absolute or incremental encoders to sense position. Like the Projectile Trajectory Game, it features nylon wheels on an aluminum cylinder with an inverted crank linkage to modulate wheel positioning. The potentiometer control offers continuous feedback, helping us assess accuracy and speed modulation capabilities. This prototype will test the CVT system's ability to dynamically adjust speed, allowing us to refine frictional engagement and wheel adjustments.

Team 515

2025

Projectile Trajectory Game with PID Control

Another Projectile Trajectory Game variant, this design implements a PID control system to achieve precise trajectory adjustments. Using an external endpoint friction contact drive, the game incorporates nylon wheels on an aluminum cylinder and an inverted crank linkage. The PID control feature allows for real-time adjustments in response to changes in trajectory angle and speed. This prototype is valuable for evaluating how well the CVT system maintains stability under varying conditions and for testing the accuracy of the friction drive paired with PID feedback.

Roller Coaster Potential Energy Study

This concept investigates energy dynamics using an external total lengthwise friction contact drive, with a rotary potentiometer to measure position along a simulated roller coaster path. Constructed with nylon wheels on a PVC cylinder, the design integrates a high-precision gear linkage to adjust wheel positioning smoothly along the track. This concept will help us understand energy transfer and potential energy conservation, testing CVT's role in modulating speed along a variable incline.

Gridded Paper Curve Plotting

The Gridded Paper Curve Plotting concept is a drawing interaction tool, using a clampcoupled direct drive system to trace paths on gridded paper. Controlled through a draw pad interaction interface, it uses polypropylene wheels on a powder-coated aluminum cylinder, connected via a magnetic carriage linkage for smoother operation. By testing precision and

2025

Team 515

stability in curve plotting, this concept explores CVT application in steady, continuous motion and ensures that user inputs translate accurately into consistent movement.

1.5.1.2 High Fidelity

Our high-fidelity concepts incorporate essential features that most closely align with the project's primary goals and customer requirements. These four designs will be integral to the concept selection process, as they represent the most complete embodiments of the functions necessary to fulfill the project objectives. Each concept focuses on dynamic interactions, control precision, and educational engagement, providing a comprehensive test of our CVT-based design capabilities.

Optimal Path Simulation for Racecar Game (Concept 1)

This high-fidelity concept allows users to explore the optimal path on a simulated racecar course. Users can draw their perceived fastest path on a chosen course, after which the robot attempts to recreate the optimal path for comparison. The user interface includes a simple menu with button controls to select various track options. Distance sensing is facilitated by string potentiometers, while stepper motors power the CVT wheels. The system operates with a belt drive and external tensioner to simulate frictional interactions, using polyurethane wheels on a steel cylinder. The linkage and carriage interaction are controlled by an inverted crank-slider pin connection. This concept teaches users about efficient path planning and helps visualize how CVT adjustments impact path accuracy and speed control.

Team 515

2025

Long Exposure Drawing Guessing Game (Concept 2)

This concept presents a guessing game that utilizes long-exposure drawing to reveal portions of a hidden shape, encouraging the user to identify the form as the robot draws. Users select a complex shape from the interface, and the robot uses a laser to draw on a photosensitive screen, momentarily illuminating individual parts of the shape. The interface is operated by a simple button input, with a string potentiometer used for distance sensing. Rack and pinion devices actuate the CVT wheels, while an internal endpoint friction contact drive moves the laser, with polyurethane wheels on a PVC cylinder for smooth interaction. The linkage and carriage are connected by a pivoting linkage, providing precision in shape tracing. This concept illustrates the precision and adaptive qualities of CVT in a dynamic, interactive environment, enhancing users' understanding of position control and incremental exposure techniques.

Projectile Trajectory Game (Concept 3)

This device simulates a projectile trajectory game to demonstrate fundamental robotics and physics principles, particularly projectile motion. The game is centered around teaching users about the effects of adjusting initial velocity and launch angle to hit a target. The curve of each projectile follows a parabolic path, which is plotted on a whiteboard with erasable markers. A pivoting linkage arm, guided by nylon wheels on an aluminum cylinder, controls the projectile's trajectory. The aluminum cylinder operates through an external endpoint friction contact drive, while servo motors provide precise steering, and rotary encoders measure position. Controlled by a PID feedback system, the device offers an interactive user interface, allowing users to input values such as launch speed and angle via a keyboard. This setup provides a

Team 515

2025

detailed exploration of motion dynamics, helping users gain a hands-on understanding of how continuous variable transmission impacts movement.

Waveform Interaction Study

This concept is designed to educate users on waveform properties by allowing them to control and interact with two sine waves, adjusting amplitude, frequency, and phase difference. The device plots wave interactions on a decorated whiteboard using erasable markers, helping visualize constructive and destructive interference. It uses a pivoting linkage arm driven by nylon wheels on an aluminum cylinder and powered by an external endpoint friction contact drive. Servo motors enable smooth control of wave adjustments, while rotary encoders sense position and ensure accurate wave representations. A PID controller provides real-time adjustments, and users can interact with the system via a keyboard-based interface. This setup not only teaches fundamental concepts in wave theory but also highlights CVT functionality through continuous modulation of motion parameters.

Each high-fidelity concept has been carefully crafted to support the technical goals of demonstrating CVT principles, user engagement, and educational outcomes. These prototypes provide a clear pathway to evaluate which design best meets the project's specifications and customer requirements, offering hands-on interaction, real-time feedback, and a comprehensive exploration of CVT applications.

1.6 Concept Selection

Once the five medium fidelity and three high fidelity concepts were determined to break down and choose the best concept, using specific tools to narrow down the concepts. The point

2025

Team 515

of implanting these tools is to erase biased opinions and give a fair and discrete rating system, alloying the idea of having a fair assessment. Make sure that the team chooses the final concept based on objective reasoning. The tools used to determine this are the Binary Pairwise Comparison, House of Quality, Pugh charts, and the Analytical Hierarchy Process.

1.6.1 Binary Pairwise Comparison

Within the Binary Pairwise Comparison, the team has a list of requirements the customer gives for the device to operate. These requirements are compared and ranked on a scale of 1-0. Reading the scale from the row to a column, if a requirement in that row was given one compared to the column it is being compared to, it means that the requirement has a higher priority over the other, and the reverse happens when given a 0. Once filled, a score for each requirement will be added based on the scores in each section, making a weight factor score that will be used later with the House of Quality.

Table 8: Binary Pairwise Comparison

	Binary Pairwise Comparison										
Customer Requirements	1	2	3	4	5	6	7	8	9	10	Total #2
1. Portability		0	0	0	0 .	1	0	0	0	1	1
2. Life Span	1		0	0	1	1	0	1	1	1	4
3. Control Method	1	1		1	1	1	0	0	1	0	5
4. Device Precision	1	1	0		0	1	0	1	0	1	4
5. User Interaction	1	0	0	1		1	1	0	0	0	4
6. Device Size	0	0	0	0	0		1	0	0	0	1
7. Output Parameters	1	1	1	1	0	0		0	0	0	4
8. Continuous Movement	1	0	1	0	1	1	1		0	1	5
9. Duration	1	0	1	0	1	1	1	1		0	6
10. Modularity	0	0	1	0	1	1	1	0	1		5
Total #1	7	3	4	3	5	8	5	3	3	4	n-1=9

1.6.2 House of Quality

The House of Quality process focused on determining the primary customer needs to

guide the design. The team identified and clarified vital requirements through a systematic

Team 515 202	5 33
--------------	------

comparison, ensuring that each design aspect aligns with these priorities. Weighted scores evaluated how various design features meet customer needs, emphasizing those most crucial for safety and functionality. This structured approach allowed the team to balance all requirements objectively, ensuring that critical and secondary elements are addressed in the final design framework.

Table 9: House of Quality

		Engineering Characeristics							
Improvement Direct			N/A		1			N/A	
Units		sec	in^3	in^2	Error	lb-ft	lbs	lbs	V
Customer Requirements	Importance Weight Factor	User Response Time	Device Size	Display Size	Position Accuracy	Actuation Capability	Structure Integrity	Weight	Power
1. Portability	1		9	3			9	9	
2. Life Span	4	1			3	3	9	1	3
3. Control Method	5	9		3	9	9			3
4. Device Precision	4	1	3	9	9	9	3		1
5. User Interaction	4	9	1	3	9				
6. Device Size	1		9	3	3		9	9	1
Output Parameters	4			9	9	3			
8. Continuous Movement	5	1	3	1	9	9	1		3
9. Duration	6		1		3	9			3
10. Modularity	5		9		1		9	9	3
Raw Score: (1007		94	100	110	236	204	116	67	80
Relative Weight %	ó	9%	10%	11%	23%	20%	12%	7%	8%
Rank Order		6	5	4	1	2	3	8	7

Team 515

2025

1.6.3 Pugh Charts

The five medium-fidelity and three high-fidelity concepts outlined in Table 10 below are compared in a Pugh Chart to assess the effectiveness of their functional characteristics. The concepts are represented in columns, while the engineering characteristics, identified from the House of Quality, are listed in rows. To initiate the Pugh analysis, a reference point, or "datum," is selected, serving as a baseline against which all other concepts are evaluated. The chart employs a rating system of pluses (+), minuses (-), and satisfactory (S) to gauge comparative performance. This system translates qualitative aspects—such as concept features and requirements—into quantifiable data, enabling weighted analysis to identify the optimal choice based on the chart's results.

Table 10: Concepts Table

Concept	Description
1	Optimal Path Simulation for Racecar Game
2	Long Exposure Drawing Guessing Game
3	Projectile Trajectory Game
4	Waveform Interaction Study
5	Projectile Trajectory Game (Button-Controlled)
6	Racecar Game (Potentiometer-Controlled)
7	Projectile Trajectory Game with PID Control
8	Roller Coaster Potential Energy Study

Table 11 presents the initial Pugh Chart, with a pre-existing CVT model, developed by a previous research student under Dr. Moore, chosen as the datum. This CVT model provides the foundational baseline for evaluating the remaining seven concepts based on the top five prioritized engineering characteristics. In this first iteration of the Pugh Chart, concepts 2, 3, and

Team 515

2025

7 achieved the top positive scores. All concepts scoring positively in the first iteration were

carried forward to the next stage of evaluation.

Table 11: Pugh Chart 1 Iteration

	Pugh Chart 1										
Engineering Characeristic	2024 REU Large-scale CVT		Concept								
Engineering Characeristic	Device	1	2	3	4	5	6	7	8		
User Response Time		+	+	+	-	+	+	+	+		
Device Size	Ę	+	+	+	+	+	+	+	+		
Display Size		-	+	-	-	-	+	-	+		
Position Accuracy		+	+	+	+	+	-	+	-		
Actuation Capability	Dat	+	-	+	S	S	-	+	-		
Structural Integrity	-	S	+	+	S	-	-	+	S		
Weight		-	-	-	S	-	-	-	S		
Power		-	-	S	S	-	-	S	S		
Total Pluses 4				5	2	3	3	5	3		
Total	Minuses	3	3	2	2	4	5	2	2		

The second iteration of our Pugh Chart is shown in Table 11. In this round, Concept 4 was chosen as the datum, as it provided a balanced reference point based on its prior performance. After completing the chart, Concept 8 and 1 emerged with a score of +4, the highest in this iteration, followed closely by Concepts 2 and 3. Concept 7, however, had the lowest score, suggesting lower suitability relative to the datum.

Table 12: Pugh Chart 2 Iteration

	Pu	gh Chart 2						
Engineeving Chave equistic	G 11	Concept						
Engineering Characeristic	Concept 4	1	2	3	7	8		
User Response Time		+	+	+	-	+		
Device Size	<u>j</u>	S	S	S	S	S		
Display Size		+	S	-	S	-		
Position Accuracy		S	-	+	-	-		
Actuation Capability	Datu	S	-	+	-	-		
Structural Integrity	-	+	+	S	+	+		
Weight		-	+	-	+	+		
Power		+	-	S	-	+		
Tota	Pluses	4	3	3	2	4		
Total	Minuses	1	3	2	4	3		

Our final Pugh Chart is presented in Table 12, where Concept 2 was selected as the datum to compare the top-performing concepts from previous iterations: Concepts 1, 3, and 8. Each engineering characteristic was evaluated against this baseline, and as a result, Concept 1

2025

Team 515

achieved a score of +4, while Concept 3 scored +3. Concept 8, with a score of +1, showed relatively lower potential. These final rankings will inform the selection process in the concluding rating matrix, leading to our choice of the optimal concept.

Table 12: Pugh Chart 3 Iteration

	e + S S S S S S y + S - + + -			
Province Characteristic	Comment 2		Concept	
Engineering Characeristic	Concept 2	1	3	8
User Response Time		+	-	-
Device Size		S	S	S
Display Size		S	S	S
Position Accuracy	Datum	+	S	-
Actuation Capability		+	+	-
Structural Integrity	н	S	+	S
Weight		+	+	S
Power		-	S	+
Total Plu	ses	4	3	1
Total Min	uses	1	1	3

The top three concepts based on the final iteration are Concept 2, Concept 1, and Concept

3.

1.6.4 Analytical Hierarchy Process

The Analytical Hierarchy Process (AHP) was applied to prioritize the engineering characteristics most crucial for the project's success. The process entails comparing each characteristic against all others to establish a relative importance ranking. A scale of 1, 3, 5, 7, and 9 was used, where 1 signifies equal importance between two characteristics, and 9 indicates one characteristic is significantly more important than the other. The corresponding cell on the

Team 515

2025

opposite side of the matrix receives the inverse value of the original score. Cells comparing a characteristic to itself are marked with a 1.

Once the comparisons were completed, the scores were summed vertically. Each cell was then normalized by dividing it by the column's total, producing a normalized matrix. To verify the accuracy and impartiality of these rankings, a consistency check was performed. If the consistency ratio was below 0.1, the rankings were considered unbiased. A higher ratio indicated inconsistency, requiring adjustments to the ranking. Table 13 presents the initial AHP matrix for the engineering characteristics which can be found in <u>the Appendix Appendix</u> E.

1.6.5 Final Concept Selection

Based on the results from our Final Rating Matrix in the AppendixAppendix E, Concept 2, the "Long Exposure Drawing Guessing Game," stands out as the top choice, meeting the key criteria from our previous analysis most effectively. This concept is designed as an interactive guessing game that combines long-exposure drawing with a unique educational experience. It invites users to identify hidden shapes gradually revealed as the robot uses a laser to draw on a photosensitive screen. Users select a shape through the interface, and the robot illuminates sections of it in stages, allowing users to guess the shape incrementally.

The drawing process is powered by a CVT-controlled system that includes <u>servo motors</u> rack and pinion devices for actuating the wheels and an endpoint friction drive to move the laser with precision. Polyurethane wheels roll on a PVC cylinder for smooth, stable movement, while a pivoting linkage ensures accurate shape tracing. <u>Rotary encoders in tandem with string</u> potentiometers will sense the position of the wheels along the cylinder. A [blank] controller will interpret the input from the user and will control the steering of the wheels by modeling

Team 515

2025

dynamics of motion. Input will be registered from the user through an LCD screen and button

interface. This setup effectively demonstrates the adaptability of CVT systems and their role in maintaining precise position control. Additionally, distance is measured by a string potentiometer, and users operate the game via a straightforward button input, ensuring an intuitive experience.

This concept was chosen as it best fulfills the critical characteristics identified in the AHP matrix. The matrix highlighted the importance of repairability, durability, and reliability. Concept 2's design, which leverages long-exposure drawing and a controlled, guided movement, aligns well with these characteristics. Although this concept will require additional sensors and fine-tuned controls for maintaining consistent drawing speed and accuracy, it presents significant advantages in user engagement and educational value.

By offering a dynamic, visually engaging way to understand the CVT principle, Concept 2 provides a practical demonstration of precision control and incremental exposure techniques, making it an ideal choice to meet customer needs. The interactive format and educational focus of this concept <u>fulfillfulfills</u> both the technical requirements and the experiential goals of the project, making it the most advantageous solution among the options evaluated.

Table 13: Final Rating Matrix

Final Rating Matrix							
	Concept 2	Concept 1	Concept 3				
Material Cost	0.6	0.2	0.2				
Manufacturing Cost	0.6	0.2	0.2				
Repairability	0.429	0.143	0.429				
Durability	0.429	0.429	0.143				
Reliability	0.6	0.2	0.2				
Time to Produce	0.429	0.143	0.429				

Team 515

2025

Table <u>14:14:</u> Alternative Value Matrix

Alternative Value Matrix					
Alt. Value					
Concept 2	0.489				
Concept 1	0.181				
Concept 3	0.331				
Sum	1				

Appendices

Appendix A: Code of Conduct

This document serves as a binding contract for members of FAMU-FSU College of Engineering Senior Design Team 515 effective Fall 2024 to Spring 2025.

Project Description

Team 515 is tasked with designing an educational device to demonstrate the use of Continuous Variable Transmission (CVT) technology in robotics. The device aims to engage student audiences by highlighting the smooth movement characteristics of CVTs. If significant technological development is made, the devices could serve as a subsystem in a larger haptic feedback collaborative robot (cobot) for remote tele-operation (OpenAI, 2024).

Team 515

2025

Mission Statement

Team 515's objective is to collaboratively design a mechanical device for robotic education. The team will apply engineering design strategies and knowledge in a professional and ethical manner, ensuring the representation of the FAMU-FSU College of Engineering with respect and integrity.

Outside Obligations

Team 515 intends for team and sponsor meetings to occur during hours that best align with each party's schedule. To do so effectively, each member's schedule was considered when selecting meeting times. Absences will be discussed in the Attendance section. The following are known outside obligations:

- Kemani Harris: Undergraduate research, Organization meetings and events
- Aaron Havener: Work (schedule varies weekly)
- Jacob Hernandez: AME Undergraduate Research, Organization Obligations
- Aliya Hutley: <u>NASA Langley Research Center M-F MagLab & HPMI Research</u>
- Cade Watson: ASC undergraduate research on Monday, Wednesday, and Friday;
 Corresponding Secretary obligations for Tau Beta Pi involvement occurring throughout each week; <u>Cchurch obligations on Sunday and Tuesday</u>

Team Roles

Team 515

2025

The following table outlines the agreed roles for each team member, which may be reassigned or adjusted as needed. Additional roles may be assigned during the project, and any changes will be discussed with the team.

Table <u>5</u>: <u>Table</u>: Team Roles

Team Member	Role
	Dynamic Systems Engineer – responsible for
Kemani Harris	work on the kinematics and forces interacting
	with the system
	Controls Engineer – responsible for
	incorporating electrical components and
Aaron Havener	control system programming with in the
	motion of the mechanism. Aid and support
	systems engineer with performing tests.
	Design Engineer – responsible for
	incorporating kinematic, materials, and testing
Jacob Hernandez	feedback into the iterative design process to
	produce the most feasible, high-fidelity
	prototype
	System Engineer & POC – Responsible for
Aliya Hutley	developing test procedure and documentation.
	Focus on writing and optimizing code,

Team 515

2025

	collaborating remotely with the Controls
	Engineer, and ensuring the system functions
	cohesively with the overall device. Provide
	support across design and coordinate
	meetings with Advisor while tracking
	progress. Testing Engineer & POC-
	Responsible for conducting and documenting
	tests, analyzing performance, troubleshoot
	issues, etc.
	Materials Engineer – Responsible for
Cade Watson	selecting proper engineering materials and
	material modeling

Communication

Team communication is expected to be conducted using both Microsoft Teams and text messaging. Microsoft Teams <u>and other similar shared workspace suites</u> will be used to discuss technical content, <u>assign tasks</u>, <u>and track progress</u>.-<u>while tT</u>ext messaging will be used for <u>meeting planning more informal and rapid discussion</u>. Each team member is expected to be responsive during scheduled meeting times. Normal communication hours are Monday-Friday between 8:00 AM and 10:00 PM with a maximum of 24 hours between chat responses. Members

Team 515

2025

44

are expected to communicate in a respectful and professional tone during professional meetings with sponsors, advisors, teaching staff, and stakeholders.

Dress Code

For team and sponsor meetings, casual attire is appropriate unless specified. However, for Virtual Design Reviews (VDRs), team members are expected to dress in business casual, which would consist of khakis and polo/button-down shirts. On Senior Design Day, a business professional dress code is required.

Attendance Policy

Regularly scheduled team meetings have been agreed to occur during Senior Design class following the lecture. Currently this is scheduled for Tuesday and Thursday from 3:30 PM – 7:45 PM. Sponsor/Advisor meetings are tentatively scheduled biweekly on Monday at 3:00 PM for Wednesdays at 4:45 PM For these meetings, absences should be stated within 1 hour of the meeting time. The previous meeting is expected to be discussed in the following meeting. If a notification is not given or attendance is missed at the following meeting, an infraction will be incurred (refer to Intervention Policy). If a notification is not given and attendance is missed at the following meeting, a strike will be incurred.

Additional team meetings are scheduled at least 12 hours prior to the desired date. Notification of attendance should be provided using the same minimum window. Failure to do so will result in an infraction. Design Reviews require mandatory attendance. If missed, an automatic 2 strikes are incurred.

Team 515

2025

Commented [AH1]: Refer to When2Meet for new possible time Commented [AH2R1]: Additionally, adding Hybrid Meeting Option for remote members.

Task Tracking and Accountability

Formatted: Centered

To ensure project completion and timely submission of Canvas Assignments, the team will use Microsoft Teams Planner App for task management. During Team 515's Weekly Meeting, typically held on Tuesdays, tasks will be created and planned for the next 1 to 2 weeks, aligning with project deadlines, milestones, and Canvas Submission due dates. Tasks will be assigned in rotations among team members, with each person taking responsibility for specifica specific task. If necessary, team members may exchange responsibilities, provided that the change is communicated in advance and the shift is validated by the team. If necessary, team members may exchange responsibilities, provided the change is communicated in advance and validated by the team. Each task will be clearly defined with specific objectives and due dates. An individual will also be responsible for submitting each Canvas Assignment, ensuring necountabilityaccountability, and reducing the risk of missed deadlines. Team members will be expected to regularly check the Planner App to track their progress and provide updates during meetings. This system will help the Team stay organized, accountable, and on track.

<u>To hold each member accountable for their tasks, the intervention policy (refer to</u> <u>Intervention Policy) will be employed. If the team deems that a member has not met their tasks</u> <u>sufficiently, an infraction will be incurred at the first occurrence. At the second occurrence, a</u> <u>strike will be incurred, and a proactive meeting will be held during class time to determine</u> <u>corrective actions. Each of the following occurrences will incur a strike. Note that if the team</u> <u>determines the member was not at fault, punitive measures may be reversed.</u> Formatted: Left, Indent: First line: 0.5"

Team 515

2025

Intervention Policy

Team 515 will use an intervention policy constituting smaller infractions and larger strikes. Three infractions constitute one strike. Two strikes will result in a team intervention. This involves a meeting with the team to discuss preventative measures. Communication about the meeting will be provided via text message and e-mail. Note that failure to attend the intervention will result in a third strike. Upon the incursion of a third strike, a meeting with Dr. McConomy will be scheduled via email seeking a team-wide meeting to discuss punitive measures. The team agrees that emergencies, as determined by a member's respective school, absolve a team member of any potential strike. When meeting with Dr. McConomy, the team seeks guidance on how to address the situation and requests support in facilitating a resolution, which may include mediation or formal intervention to ensure the team can move forward productively.

Amendment Policy

Amendments to this contract are allowed but must be passed by a unanimous decision of group members.

Statement of Understanding

I acknowledge the guidelines outlined in the Code of Conduct and shared on the Microsoft Teams page. I understand it is my responsibility to follow these procedures and agree to the policies and any consequences determined by the team for non-compliance.

Team 515

2025

Code of Conduct Acknowledgement

imm Harris

Claron J. Haven

Capiel Cul Hurs Winger Hutley

Team 515

2025

Appendix B: Work Breakdown Structure

Table <u>6</u>:<u>Table</u>: Work Breakdown Structure

Milestone	Task	Subtasks (Packets)	Managing	Status	Due Date	Date
			Team			Completed
			Member			
VDR1			-	Not started	10/8/2024	
	Project Scope		-	Completed	9/20/2024	9/20/2024
		Set meeting time with sponsor(s)	Aliya	Completed		9/13/2024
		Perform background research on sponsors and previous work	Aaron	Completed		9/16/2024
		Form questions for the sponsor about the purpose, goals, and previous progress of the project	Aaron	Completed		9/16/2024
		Discuss questions with sponsor and take meeting notes	Jacob	Completed		9/16/2024
		Discuss meeting notes as a group and refine	Cade	Completed		9/19/2024

Team 515

2025

		** .	G 1.1		0/10/2024
	As a group, identify a	Kemani	Completed		9/19/2024
	clear project description,				
	goals, markets,				
	stakeholders, and				
	assumptions				
	Write the document	Aliya	Completed		9/19/2024
	Edit the document	Cade	Completed		9/20/2024
	Submit the document	Cade	Completed		9/20/2024
Customer Needs		-	Not started	9/27/2024	
	Set meeting time with sponsor(s)	Aliya	Completed		9/20/2024
	Perform background research on customer and end user behavior	Aaron	Completed		9/22/2024
	Form questions for the sponsor regarding the customers and end users	Cade	Completed		9/22/2024
	Discuss questions with sponsor and take meeting notes	Kemani	Completed		9/24/2024

				1	
	Discuss meeting notes	Jacob	Completed		9/28/2024
	as a group and form a				
	list of questions and				
	answers				
	Interpret engineering	Aaron	Completed		9/30/2024
	needs from the sponsor's				
	answers				
	If needed, perform	Aliya	Not started		-
	additional				
	supplementary technical				
	research				
	Write the document	Kemani	Not started		10/1/2024
	Edit the document	Aliya	Not started		10/1/2024
	Submit the document	Cade	Not started		10/1/2024
Functional		-	Completed	10/4/2024	10/4/2024
Decomposition					
	Utilize the knowledge of	Kemani	Completed		10/3/2024
	engineering needs and				
	previous work to create				
	new sub-systems or				
	modify existing ones				
	moury existing ones				

	For each sub-system,	Jacob	Completed		10/3/2024
	determine lower-level				
	functions				
	Organize a graphic	Aaron	Completed		10/3/2024
	detailing the hierarchal				
	structure of the sub-				
	systems and functions				
	List each function and	Cade	Completed		10/3/2024
	determine its physical				
	importance to each sub-				
	system				
	Based on	Cade	Completed		10/3/2024
	function/system				
	relationships, determine				
	the most important				
	system and function(s)				
	Write the document	Aaron	Completed		10/4/2024
	Edit the document	Kemani	Completed		10/4/2024
	Submit the document	Aliya	Completed		10/4/2024
VDR2		-	Not started	11/12/2024	

Targets and		-	Completed	10/18/2024	10/18/2024
Metrics					
	List all determined	Jacob	Completed		10/15/2024
	functions				
	Assign a measurable	Kemani	Completed		10/18/2024
	metric/target to each				
	function				
	Determine specific	Cade	Completed		10/18/2024
	values and units when				
	possible				
	Research and identify	Aliya	Completed		10/18/2024
	testing methodology				
	Research and identify	Kemani	Completed		10/18/2024
	measuring equipment				
	and tools				
	Write the document	Cade	Completed		10/18/2024
	Edit the document	Aaron	Complete		10/18/2024
	Ean me document	Aaton	Complete		10/18/2024
			Complete 1		10/10/2024
	Submit the document	Aaron	Completed		10/18/2024
			N. e. e. t	10/05/0001	
Concept		-	Not started	10/25/2024	
Generation					

 	<u>. </u>			
Divide concept	Aaron	Not started		
generation amongst				
team members				
Conduct research on any	Kemani	Not started		
sponsor-specified				
technology and products				
from adjacent markets				
Brainstorm concepts	Aliya	Not started		
using various methods				
of formation				
Create preliminary	Aaron	Not started		
sketches and diagrams				
to visualize different				
concepts				
Organize concepts by	Cade	Not started		
varying fidelity				
Discuss and	Jacob	Not started		
improve high and				
medium fidelity				
concepts				
Write the document	Kemani	Not started		
Edit the document	Aliya	Not started		
			1	l

	Submit the document	Cade	Not started		
Concept		-	Not started	11/1/2024	
Selection					
	From engineering needs,	Jacob	Not started		
	create a list of				
	overarching customer				
	requirements				
	Perform binary	Aaron	Not started		
	piecewise comparison				
	on the list to determine				
	the heaviest weighted				
	requirements				
	Create a House of	Aaron	Not started		
	Quality ranking				
	targets/metrics by their				
	ability to meet customer				
	requirements				
	Eliminate unnecessary	Cade	Not started		
	targets/metrics				
	Perform research on	Aliya	Not started		
	competing products or				
	previous iterations for				
	benchmarking				

Create a Pugh	Aaron	Not started	
containing concepts to			
each other and possible			
benchmarkbenchmark			
Eliminate poor-	Kemani	Not started	_
_	Remain	Not started	
performing concepts			
Using an analytical	Aaron	Not started	
hierarchy process,			
compare each final			
target/metric against			
each other to determine			
its weighting			
Check AHP comparison	Cade	Not started	
of final target/metrics			
for consistency			
Using an analytical	Aaron	Not started	
		1.5t Stated	
hierarchy process,			
compare each final			
concept against each			
other for every			
target/metric			
-			

[
		Check AHP	Aliya	Not started		
		comparisons of final				
		concepts for consistency				
		From the analytical	Kemani	Not started		
		hierarchy done, create a				
		final rating matrix and				
		calculate alternative				
		values for each concept				
		Write the document	Jacob	Not started		
		Edit the document	Aliya	Not started		
		Submit the document	Kemani	Not started		
	n:-1			Not started	11/9/2024	
	Risk		-	Not started	11/8/2024	
	Assessment					
		Read and discuss safety	Cade	Not started		
		expectations				
		Complete Worksheet 1	Jacob	Not started		
		and Worksheet 2				
		Receive confirmation	Aliya	Not started		
		and from advisor	2 11 y a	Thor started		
		Submit Worksheet 1 and	Kemani	Not started		
		Worksheet 2				
L			1	1		

		_	Not started	12/3/2024	
			The stated	12/5/2021	
Dill of Matarials			Not storted	11/15/2024	
BIII OI WIAteriais		-	Not started	11/13/2024	
	Desin en sin serie s	Tanah	Not storted		
		Jacob	Not started		
	drawings/plans for				
	selected concept				
	Determine desired	Cada	Not started		_
		Caue	Not started		
	building material(s)				
	Determine required	Aaron	Not started		
	components				
	Research pricing and	Aliya	Not started		
	availability of both				
	material and				
	components				
	Select the best fit	Cade	Not started		
	material and				
	components based on				
	pricing and availability				
	Itemize all material	Aaron	Not started		
	stock and components				
	Write the document	Kemani	Not started		
	Bill of Materials Bill of Materials Bill of Materials	Begin engineering drawings/plans for selected concept Determine desired building material(s) Determine required components Research pricing and availability of both material and components Select the best fit material and components based on pricing and availability	Image: Second	Bill of Materials-Not startedBill of Materials-Not startedaloobBegin engineering drawings/plans for selected conceptJacobNot startedDetermine desired building material(s)CadeNot startedDetermine required componentsAaronNot startedResearch pricing and availability of both material and componentsAliyaNot startedSelect the best fit material and components based on pricing and availabilityCadeNot startedImaterial and components based on pricing and availabilityCadeNot startedImaterial and components based on pricing and availabilityImaterial AaronNot startedImaterial and components based on pricing and availabilityAaronNot startedImaterial and components based on pricing and availabilityAaronNot started	Bill of MaterialsImage: selected conceptNot started11/15/2024Determine desired building material(s)CadeNot startedImage: selected conceptDetermine desired building material(s)CadeNot startedImage: selected conceptDetermine required componentsAaronNot startedImage: selected conceptResearch pricing and availability of both material and componentsAliyaNot startedSelect the best fit material and componentsCadeNot startedSelect the best fit material and components based on pricing and availabilityCadeNot startedItemize all material stock and componentsAaronNot startedItemize all material stock and componentsAaronNot started

	Edit the document	Jacob	Not started		
	Submit the document	Aliya	Not started		
Spring Plan		-	Not started	11/22/2024	
	Create blank timeline	Aliya	Not started		
	Identify and date	Cade	Not started		
	deliverables Speak with	Jacob	Not started		
	sponsor/advisor about additional milestones				
	Begin to identify basic tasks that can help complete deliverables	Kemani	Not started		
	and milestones Write the document	Aaron	Not started		
	Edit the document	Cade	Not started		
	Submit the document	Jacob	Not started		
	Submit the document	Jacob	not started		

	Rapid Prototype		-	Not started	12/3/2024	
		Discuss methods for	Aliya	Not started		-
			5			
		developing a rapid				
		prototype				
		Simplify detailed design	Jacob	Not started		
		for a rapid prototype				
		Select and purchase	Cade	Not started		
		necessary materials				
		Assemble Prototype	Aaron	Not started		
		Create digital rendering	Kemani	Not started		
		of prototype				
	End of Semester		-	Not started	12/3/2024	
	Document					
		Discuss status quo of	Aliya	Not started		
		project				
		Discuss future work	Jacob	Not started		
		from spring plan				
		2				
		Discuss and identify	Aliya	Not started		
		problems				
		Write the document	Kemani	Not started		
-		1	1	1		

		Edit the document	Aaron	Not started		
		Submit the document	Cade	Not started		
Poster (not			-	Not started	12/6/2024	
included in						
VDR3)						
		Assemble Poster	Aliya	Not started		
		Contents				
		Edit Poster Contents	Cade	Not started		
		Submit Poster Contents	Kemani	Not started		
Embodied				Not started		
Design Rough				Not started		
Plan (Spring						
2025)						
	Prototyping		-	Not started		
		Check received	Jacob	Not started		
		shipments for all				
		components/materials				
		Reorder or find	Cade	Not started		
		alternative				

 1			1	1	
	components/materials if				
	necessary				
	Machine necessary	Kemani	Not started		
	custom parts				
	Assemble the prototype	Aaron	Not started		
	and integrate all				
	components.				
	Perform preliminary	Aliya	Not started		
	tests to verify basic				
	functionality.				
Testing		-	Not started		
	Create a test plan	Aliya	Not started		
	outlining testing				
	procedures and criteria.				
	Conduct tests according	Kemani	Not started		
	to the plan, including				
	performance, reliability,				
	and safety tests				
	Collect and analyze test	Aaron	Not started		
	data to evaluate the				
	prototype's performance				
	Identify and document	Cade	Not started		
	any issues or areas for				
	improvement				
	1	1	1		

· · · · · · · · · · · · · · · · · · ·			1	1	1	
		Make necessary	Jacob	Not started		
		adjustments and perform				
		additional tests as				
		required				
	Building		-	Not started		
		Finalize the design	Aliya	Not started		
		based on testing				
		feedback				
		Develop a detailed plan	Jacob	Not started		
		for the final build,				
		including timeline and				
		resource allocation				
		Fabricate or acquire all	Cade	Not started		
		necessary components				
		for the final build				
		Assemble the final	Aaron	Not started		
		product, ensuring all				
		parts are correctly				
		integrated and functional				
		Conduct testing of the	Kemani	Not started		
		completed device to				
		ensure it meets all				
		project requirements				
L		1	1	1	1	

Appendix C: Target Summary

Table 7: Target Summary

Function	Metric	Target	
Acquire Path Parameters Export Path Parameters Interpret Parameters to Nominal Control Data	Time Delay Between Interface and Motion Systems (sec)	0.5-1 sec	
Sense Position	Translation Measurement	Error ± 0.05 in	
Compare Output to Nominal Control Data	Desired Control Time Constant (sec)	0.5 sec	
Calculate Error	Desired Steady State Output Error (in)	± 0.1 in	
Calculate Actuation Data	Frequency of New Data Generation (Hz)	100 kHz	
	Maximum Actuation Torque (lb<u>lb.</u>*ft)	-	
Actuate Steering	Desired Steering Coefficient of Kinetic Friction	0.215	
Display Output	Display Output area (in^2)	8.5 in x11 in	

Team 515

2025

	Desired Completion Time (sec)	60 sec		
Withstand Static Load	Total Mass (lb<u>lb.</u>)	22 lb lb.		
Withstand Inertial Forces	Ratio of Base Mass to Linkage Mass	2		
Withstand Cyclical Stresses	Life Cycle (years)	5 years		
House Mechanical Components House Electrical Components Organize Connections	Available Volume (in^3)	32 in x 28 in x 55 in		
Facilitate Transportation	Total Mass (<u>Hblb.</u>)	22 lb<u>lb.</u>		
Receive Power	Input Voltage (V)	120V AC		

Appendix D

Morphological Chart						
Function	Display	Driving	Controls	Wheel Cylinder		Carriage
	Output	Methods		Interaction		Linkage
						Interaction
ldea 1	Racecar	Internal	Rotary	Oiled	Aluminum	Inverted
	Game	gearset	potentiom	Brass	Cylinder	crank
		drive	eter to	Wheel		

Team 515

2025

			sense position			linkage pin slider
Idea 2	Long Exposure Drawing Guessing Game	Internal endpoint friction contact drive	Linear/stri ng potentiom eter using absolute or increment al encoder	Nylon Wheel	PVC Cylinder	Inverted crank linkage slot slider
ldea 3	Carbon Tracing Paper Drawing Guessing Game	Internal total lengthwise friction contact drive	Accelerom eter to sense position	Polyureth ane Wheel	Steel Cylinder	Dual belt Linkage system
ldea 4	Egg Balance Run	Internal self- intersecting belt drive	Inertial Measurem ent Unit (IMU) to sense position	Polypropyl ene Wheel	Carbon Fiber Cylinder	Quick-Swap Linkage Modules
ldea 5	Projectile Trajectory Game	External gearset drive	Joystick controller input	Natural Rubber Wheel	Powder Coated Aluminum Cylinder	Adjustable Carriage Angle
ldea 6	Waveform Interaction Study	External endpoint friction contact drive	Touch screen input	Toy Car Wheel	Aluminum Cylinder with Skateboard Grip Tape	Pivoting Linkage Arm
ldea 7	Roller Coaster	External central point friction	XBOX/Play Station	Wooden Wheel	Wooden cylinder	High- Precision Gear Linkage

	Potential	contact	controller			
		drive				
	Energy Study	unve	input			
ldea 8	Gridded	External	Servo	Cardboar	Matted	
	Paper Curve	total	potentiom	d Wheel	Cylinder	
	Plotting	lengthwise	eter			
		friction				
		contact				
		drive				
ldea 9	Open a Box	Distance	Voice	Velcro	Cardboard	Shock-
		tensioned	recognitio	wheel	Cylinder	Absorbing
		belt drive	n input			Linkage
ldea 10	Open and	Externally	Lead and	Foam		Telescopic
	Close a Door	tensioned	screw	Wheel		Linkage
		belt drive	linear			
			actuator			
ldea 11	Toss a	Motor driven	Rack and			Magnetic
	Student a	pin coupled	pinion			Carriage
	Ball	direct drive	linear			Connection
			actuator			
ldea 12	Throw a	Motor driven	DC/AC			Tension-
	Piece of	clamp	Motor(s)			Controlled
	Paper into a	coupled	rotary			Linkage
	Trashcan	direct drive	actuator			LIIIkage
	Trasficali	ullect ullve	actuator			
ldea 13	Sweep the	Motor driven	Stepper			Quick-Swap
	Floor	weld	motor(s)			Linkage
		coupled	rotary			Modules
		direct drive	actuator			
ldea 14	Laser Display	Hand	Servo			
		cranked pin	Motor(s)		1	
		coupled	rotary		1	
		direct drive	actuator			
					<u> </u>	

ldea 15	Flip a Table	Hand	Draw pad		
		cranked	interaction		
		clamp	interface		
		coupled			
		direct drive			
ldea 16	Kick a Soccer	Hand	Rotary		
	Ball	cranked	Encoder		
		weld			
		coupled			
		direct drive			
ldea 17	Change the		Mobile		
	AC		Арр		
	Temperature		interface		
ldea 18	Open and		Simple		
luea lo	close a		button		
	laptop		input		
ldea 19	Paint a		Optical		
	Portrait		sensor(s)		
ldea 20	Tik tac toe		Proximity		
			sensor(s)		
ldea 21			Keyboard		
			and		
			Mouse		
			Data		
			Input		
ldea			PID		
00			Controlle		
22			r		

Concept Idea	Concept Description
	Morphological Idea
	The concept features a Racecar Game with Internal Gearset Drive,
1	controlled by a Rotary Potentiometer. It has Oiled Brass Wheel
1	interaction and uses an Inverted Crank Linkage Pin Slider for carriage
	linkage.
	This concept includes a Long Exposure Drawing Guessing Game with
	Internal Endpoint Friction Contact Drive. It uses a Linear/String
2	Potentiometer for control, Nylon Wheel interaction, and an Adjustable
	Carriage Angle.
	A Projectile Trajectory Game driven by an External Gearset Drive,
3	controlled by a Joystick Controller Input. The concept features Natural
	Rubber Wheel and Inverted Crank Linkage Slot Slider for interaction
	The concept involves an Egg Balance Run using Internal Self-
4	Intersecting Belt Drive, with IMU to sense position. The wheel-cylinder
	interaction is through Polypropylene Wheel, and the linkage uses
	Quick-Swap Linkage Modules.

	This concept includes Waveform Interaction Study with External
5	Endpoint Friction Contact Drive, controlled by Touch Screen Input. It
	features Toy Car Wheel and Pivoting Linkage Arm for carriage linkage.
	A Carbon Tracing Paper Drawing Guessing Game that uses a Motor
6	Driven Pin Coupled Direct Drive. It is controlled by Voice Recognition
Ŭ	Input and uses Wooden Wheel for wheel interaction, along with
	Shock-Absorbing Linkage.
	This concept uses Gridded Paper Curve Plotting with Distance
7	Tensioned Belt Drive, and it is controlled by a Lead and Screw Linear
,	Actuator. It features a Foam Wheel for wheel interaction, with a
	Telescopic Linkage.
	Featuring Laser Display with a Hand Cranked Weld Coupled Direct
	Drive, controlled by a Rack and Pinion Linear Actuator. The wheel
8	interaction involves a Velcro Wheel, and it uses Magnetic Carriage
	Connection.
	The concept is Flip a Table, driven by Hand Cranked Clamp Coupled
9	Direct Drive, and controlled using Optical Sensor(s). It features
	Cardboard Wheel interaction and a Tension-Controlled Linkage.

	Involves Kick a Soccer Ball using Motor Driven Pin Coupled Direct
10	Drive, with control through Proximity Sensor(s). The concept uses
	Wooden Wheel and Magnetic Carriage Connection for linkage.
	The concept is about Change the AC Temperature using a Motor
11	Driven Pin Coupled Direct Drive, controlled by a Mobile App Interface.
	It features Natural Rubber Wheel interaction and Quick-Swap Linkage
	Modules.
	Open and close a laptop concept using Externally Tensioned Belt
12	Drive, controlled by Simple Button Input. It features Foam Wheel
	interaction and uses a Telescopic Linkage.
	Paint a Portrait concept using Hand Cranked Clamp Coupled Direct
13	Drive, controlled by Optical Sensor(s). The concept features
	Cardboard Wheel interaction with Magnetic Carriage Connection.
	The concept is Tic Tac Toe, driven by Hand Cranked Weld Coupled
14	Direct Drive, and controlled by Proximity Sensor(s). It has a Wooden
	Wheel and uses Shock-Absorbing Linkage.
	Racecar Game driven by External Gearset Drive and controlled using a
15	Joystick Controller Input. It features a Nylon Wheel and Inverted Crank
	Linkage Slot Slider.

	The concept is a Long Exposure Drawing Guessing Game with Internal
16	Gearset Drive, controlled by a Rotary Potentiometer. It features Oiled
	Brass Wheel interaction and Adjustable Carriage Angle.
	Egg Balance Run using Internal Self-Intersecting Belt Drive, controlled
17	with an IMU to sense position. The wheel interaction is via
	Polypropylene Wheel and Pivoting Linkage Arm.
	The concept is Carbon Tracing Paper Drawing Guessing Game with
18	Motor Driven Pin Coupled Direct Drive, controlled by a Lead and Screw
10	Linear Actuator. It features Velcro Wheel and Tension-Controlled
	Linkage.
	Flip a Table driven by Distance Tensioned Belt Drive and controlled
19	using Voice Recognition Input. It features a Foam Wheel and
	Telescopic Linkage.
	Waveform Interaction Study using External Endpoint Friction Contact
20	Drive, controlled by Touch Screen Input. The concept has a Toy Car
	Wheel and Quick-Swap Linkage Modules.
	Laser Display with Hand Cranked Weld Coupled Direct Drive,
21	controlled by a Rack and Pinion Linear Actuator. It features Velcro
	Wheel interaction and Magnetic Carriage Connection.
L	

	The concept is Kick a Soccer Ball with Hand Cranked Clamp Coupled
22	Direct Drive, controlled by Proximity Sensor(s). It features Cardboard
	Wheel interaction and Tension-Controlled Linkage.
	Change the AC Temperature concept with Externally Tensioned Belt
23	Drive, controlled by Mobile App Interface. It uses Wooden Wheel and
	Shock-Absorbing Linkage.
	Projectile Trajectory Game with External Gearset Drive, controlled by a
24	Joystick Controller Input. The wheel interaction is with Natural Rubber
	Wheel, and Adjustable Carriage Angle is used for linkage.
	The concept is Racecar Game with Internal Gearset Drive, controlled
25	using a Rotary Potentiometer. It features Nylon Wheel interaction with
	Inverted Crank Linkage Pin Slider.
	Gridded Paper Curve Plotting concept with Motor Driven Pin Coupled
26	Direct Drive, controlled by Voice Recognition Input. It uses Cardboard
	Wheel and Magnetic Carriage Connection.
	Flip a Table driven by Hand Cranked Clamp Coupled Direct Drive, with
27	control through a Lead and Screw Linear Actuator. It features Foam
	Wheel and Telescopic Linkage.
L	1

	Egg Balance Run driven by Internal Self-Intersecting Belt Drive,
28	controlled by an IMU to sense position. It features Toy Car Wheel
	interaction and Quick-Swap Linkage Modules.
	The concept is Long Exposure Drawing Guessing Game with Internal
29	Gearset Drive, controlled by Linear/String Potentiometer using
	Encoder. It features an Oiled Brass Wheel and an Adjustable Carriage
	Angle.
	Paint a Portrait driven by Externally Tensioned Belt Drive, controlled
30	using Optical Sensor(s). It uses a Wooden Wheel and Shock-Absorbin
	Linkage.
	Laser Display using Hand Cranked Clamp Coupled Direct Drive,
31	controlled by Proximity Sensor(s). It features Velcro Wheel and
	Magnetic Carriage Connection.
	Racecar Game driven by External Gearset Drive, with Joystick
32	Controller Input for control. The wheel interaction is through Natural
	Rubber Wheel and uses Inverted Crank Linkage Pin Slider for linkage.
	Waveform Interaction Study using External Endpoint Friction Contact
33	Drive, controlled by Touch Screen Input. It features Nylon Wheel and
	Pivoting Linkage Arm.

	Long Exposure Drawing Guessing Game driven by Internal Endpoint
34	Friction Contact Drive, controlled by a Rotary Potentiometer. It uses
04	an Oiled Brass Wheel and an Inverted Crank Linkage Slot Slider for
	linkage.
	Gridded Paper Curve Plotting driven by Motor Driven Pin Coupled
35	Direct Drive, with control through Voice Recognition Input. The wheel
	interaction is with Wooden Wheel and uses Shock-Absorbing Linkage.
	Kick a Soccer Ball using Motor Driven Pin Coupled Direct Drive,
36	controlled by a Lead and Screw Linear Actuator. It features Foam
	Wheel and Tension-Controlled Linkage.
	Egg Balance Run driven by Internal Self-Intersecting Belt Drive,
37	controlled by an IMU to sense position. It has a Polypropylene Wheel
	and uses Quick-Swap Linkage Modules.
	Carbon Tracing Paper Drawing Guessing Game driven by Hand
38	Cranked Weld Coupled Direct Drive, controlled by a Rack and Pinion
	Linear Actuator. It uses Velcro Wheel and Telescopic Linkage.
	Change the AC Temperature driven by Distance Tensioned Belt Drive,
39	with control via Mobile App Interface. It features Cardboard Wheel and
	Magnetic Carriage Connection.

	Paint a Portrait using Externally Tensioned Belt Drive, controlled by	
40	Optical Sensor(s). It has a Toy Car Wheel and Adjustable Carriage	
	Angle.	
	Simulate the optimal path on a racecar course, sensing distance by	
	string potentiometers. The device is driven by a belt drive with and	
41	external tensioner and the CVT frictional interaction is between a	
	polyurethane wheel on a steel cylinder and the linkage-carriage	
	interaction by an inverted crank-slider pin connection	
	Using a laser and photosensitive paper to play a long exposure a	
	prolonged exposure drawing guessing game, using a simple button	
42	input. The device is driven by an internal endpoint friction contact	
42	drive and the CVT frictional interaction is between a polyurethane	
	wheel on a PVC cylinder and the linkage-carriage interaction by a	
	pivoting link connection.	
	Doing a roller coaster potential energy study using rotary	
	potentiometers to sense position. The device is driven by an external	ι
43	total lengthwise friction drive and the CVT frictional interaction is	
	between a nylon wheel on a PVC cylinder and the linkage-carriage	
	interaction by a high position gear linkage connection.	

	-
	Drawing a plot on gridded paper using a haptic drawing pad interaction
44	interface. The device is driven by a concentric-axes, clamp-coupled
	direct drive and the CVT frictional interaction is between a
	polypropylene wheel on a powder coated aluminum cylinder and the
	linkage-carriage interaction by a magnetic carriage connection
	This device would provide a game to teach projectile motion.
	Movement is driven by a pivoting linkage arm. The arm is driven by
	nylon wheels steered on an aluminum cylinder driven with an external
45	endpoint friction contact drive—_Steering can be done by
40	servosservos, and sensing can be done by rotary encoders. This could
	be controlled by a PID controller. A keyboard can be used to input
	parameters.
	This device would provide a game to teach about wave properties and
	their effect on interference. Movement is driven by a pivoting linkage
	arm. The arm is driven by nylon wheels steered on an aluminum
46	cylinder driven with an external endpoint friction contact drive
	Steering can be done by servos servos, and sensing can be done by
	rotary encoders. This could be controlled by a PID controller. A
	keyboard can be used to input parameters.

	SCAMPER
	Combine (Concept 2): Add a sensor-controlled lighting system to the
47	Long Exposure Drawing Game to simulate changes in ambient
	conditions for more immersive game dynamics.
48	Adapt (Concept 2): Modify the Long Exposure Drawing Game by adding
40	a color-changing LED for creative tracing feedback.
49	Modify (Concept 4): Increase wheel friction on the Egg Balance Run for
49	greater stability, adjusting the difficulty of maintaining balance.
	Put to Another Use (Concept 1): Adapt the Racecar Game to include
50	trajectory prediction by adjusting angles, demonstrating physics
	concepts.
51	Eliminate (Concept 5): Remove one wheel in the Waveform Interaction
51	Study to show the effect of imbalanced forces on movement.
	Reverse (Concept 4): Design the Egg Balance Run to flip the cylinder's
52	rotation direction randomly, adding a reaction-time component to the
	learning experience.
	Substitute (Concept 3): Use a haptic feedback joystick instead of a
53	traditional one for the Projectile Trajectory Game, enhancing control
	sensitivity.

Г

2025

	Combine (Concepts 10 and 9): Merge Kick a Soccer Ball and Flip a
54	Table into a single concept, using multiple pivoting linkages for
	compound movements.
	Adapt (Concept 13): Include a pressure sensor in the Paint a Portrait
55	concept to simulate brush strokes, offering different resistance for
	artistic control.
56	Modify (Concept 6): Add a feedback delay to the Carbon Tracing
	Game, creating a lag effect that challenges players' timing skills.
	Put to Another Use (Concept 7): Adapt the Gridded Paper Plotting
57	concept into an educational tool for plotting real-world data in high
	school physics.
	Eliminate (Concept 12): Simplify the Open and Close a Laptoplaptop
58	mechanism by using a single continuous drive system instead of
	multiple belts.
59	Reverse (Concept 11): Reverse the gear motion in Change the AC
	Temperature to visualize cooling and heating cycles alternately.
	Substitute (Concept 43): Replace the standard potentiometer in the
60	Roller Coaster Energy Study with a tension-sensing potentiometer to
	enhance simulation.
L	

	-
	Combine (Concept 15): Integrate voice commands in the Racecar
61	Game to adjust speed, allowing hands-free control for quick
	adjustments.
	Adapt (Concept 17): Adapt the Egg Balance Run to include a second
62	cylinder, demonstrating two-axis balance control for increased
	difficulty.
	Modify (Concept 20): Use a rubber-coated cylinder in the
63	Waveform Study to adjust grip dynamics, influencing frequency results
	in the wave interaction.
	Put to Another Use (Concept 8): Repurpose the Laser Display
64	as a blueprint sketching tool, where students input coordinates to
	draw technical diagrams.
	Eliminate (Concept 14): Remove proximity sensors in Tic Tac
65	Toe and use a visual tracking camera instead for improved real-time
00	
	response.
	Reverse (Concept 3): Reverse the controller input in the
	neverse (concepto), neverse the controller input in the
66	Projectile Trajectory Game so angle adjustments are inverted, adding
	complexity to trajectory prediction.
L	

	Substitute (Concert 12): Declare the Farm M/heal in Ourse and
	Substitute (Concept 12): Replace the Foam Wheel in Open and
67	Close a laptop with a rubberized wheel for smoother, quieter
	operation.
	Combine (Concept 7): Add a second cylinder in the Gridded
68	Paper Curve Plotting for dual evicedual axis plotting, expanding
00	Paper Curve Plotting for dual-axis dual axis plotting, expanding
	educational possibilities for geometry.
	Substitute (Concept 16): Use a proximity sensor instead of a rotary
	Substitute (Concept 10). Use a proximity sensor instead of a rotary
69	potentiometer in the Long Exposure Drawing Game to adjust speed
	based on the user's hand position, improving user interaction time.
	Adapt (Concept 5): Include a second adjustable pivot in the Waveform
70	Interaction Study to demonstrate phase shift concepts in wave
	interference.
	Replace (Concept 35): the Rotary Potentiometer with a Voice Recognition
71	Input to provide hands-free control and make the user interaction more
	intuitive.
	Modify (Concept 1): Add a real-time timer display to the
72	Racecar Game to show lap times, meeting the metric of tracking time
	for user engagement.

I

2025

	Eliminate (Concept 10): Remove the magnetic carriage in Kick a
73	Soccer Ball to use a simple pin linkage, reducing complexity while
	retaining basic movement functionality.
	Reverse (Concept 6): Reverse the drive direction in the Carbon
74	Tracing Game periodically, teaching students about friction and inertia
	as they respond to changes in direction.
	Substitute (Concept 8): Use a motor-driven clamp instead of a
75	hand crank for the Laser Display, increasing precision for controlled
	movements.
	Substitute (Concept 21): Use a laser pointer with adjustable
76	focus instead of a stationary laser in the Laser Display, allowing users
	to see how different focal lengths affect clarity.
	Adapt (Concept 15): Include a vibration motor in the Racecar
77	Game to simulate engine feedback, enhancing the sensory experience
	for users.
	Eliminate (Concept 12): Remove the telescopic linkage in Open
78	and Close a Laptoplaptop, simplifying it to a basic pivot system,
	reducing overall weight and supporting the portability metric.
	readoning overall weight and supporting the portability metho.

79	Put to Another Use (Concept 37): Use the Egg Balance Run mechanism for a different challenge, such as balancing a weighted	
	ball instead of an egg, to increase difficulty and variability.	
	Modify (Concept 15): Add a spring-loaded mechanism to the	
80	Racecar Game's linkage that adjusts wheel contact pressure on the	
	rotating cylinder based on speed.	
	Combine (Concept 23): Integrate a thermal sensor in the	
81	Change the AC Temperature game to display real-time temperature	
	feedback on the interface, enhancing user interactivity.	
	Adapt (Concept 11): Use a programmable app interface to control a	
82	wider range of temperatures in Change the AC Temperature,	
	demonstrating environmental effects and supporting usability metri	ics.
	Adapt (Concept 41): Introduce a variable tension adjustment on the	
83	rotating cylinder's belt drive, allowing students to manually increase	e or
	decrease tension to see how it impacts speed and torque transfer ir	ı
	the CVT	
	Adapt (Concept 33): Adapt Waveform Interaction Study with a phase	e-
84	tracking LED that shows frequency changes in real-time, supporting	Ş
	targets related to interaction speed.	
L	1	

	Eliminate (Concept 44): Remove the magnetic carriage in	
85	Drawing Plot on Gridded Paper, simplifying linkage and improving	
	transportability.	
	Eliminate (Concept 24): Remove joystick control from Projectile	
86	Trajectory Game and replace with buttons for a more accessible	
	control scheme.	
	Substitute (Concept 36): Replace the foam wheel in Kick a	
87	Soccer Ball with a more durable rubber wheel for improved accurac	;y
	and wear resistance.	
	Combine (Concept 46): Combine the Waveform Interaction Study w	/ith
88	a drawing feature, allowing students to visualize combined wavefor	ms
	on a graph.	
	Combine (Concept 7): Integrate an automatic feedback system that	t
89	adjusts the wheel position on the rotating cylinder based on load,	
	simulating real-world CVT response to varying forces.	
	Substitute (Concept 17): Replace the standard belt drive in the Egg	
90	Balance Run with a flexible, elastic drive belt that stretches under	
	load.	
	Biomimicry	
		_

91	Human Arm/Elbow: Flexing and rotating the arm creates
	controlled reciprocating movement.
92	Crab Legs: Jointed legs oscillate in a multi-directional, reciprocating
52	fashion
93	Human Jaw: Hinged Motion for chewing combines rotation and sliding
93	movements
94	Bat Echolocation: Bats use sound waves to detect their position
	relative to objects, inspiring ultrasonic sensors
95	Spider Web Vibration: Spiders sense web vibrations for
33	positioning, inspiring vibration-based position sensors
96	Ant Navigation: Ants use polarized light for orientation, inspiring
	polarized light sensors for precise positioning.
97	Whiskers in Mammals: Animals use whiskers to detect nearby objects,
	inspiring tactile proximity sensors.
98	Insect Compound Eyes: Insects detect motion changes for
	positioning, inspiring optical sensors.
99	Gecko Foot Pads: Geckos sense surface grip for positioning, inspiring
	tactile feedback sensors.
100	Human Proprioception: Muscle and joint sensors sense body position,
100	inspiring strain strain, or tension sensors.

Appendix E

Table 8: Binary Pairwise Comparison

	Binary Pairwise Comparison											
Customer Requirements	1	2	3	4	5	6	7	8	9	10	Total #2	
1. Portability		0	0	0	0.	1	0	0	0	1	1	
2. Life Span	1		0	0	1	1	0	1	1	1	4	
3. Control Method	1	1		1	1	1	0	0	1	0	5	
4. Device Precision	1	1	0		0	1	0	1	0	1	4	
5. User Interaction	1	0	0	1		1	1	0	0	0	4	
6. Device Size	0	0	0	0	0		1	0	0	0	1	
7. Output Parameters	1	1	1	1	0	0		0	0	0	4	
8. Continuous Movement	1	0	1	0	1	1	1		0	1	5	
9. Duration	1	0	1	0	1	1	1	1		0	6	
10. Modularity	0	0	1	0	1	1	1	0	1		5	
Total #1	7	3	4	3	5	8	5	3	3	4	n-1=9	

Table 9: House of Quality

				En	gineering (Characeris	tics		
Improvement Direct	tion			N/A					N/A
Units	sec	in^3	in^2	Error	lb-ft	lbs	lbs	v	
Customer Requirements	Importance Weight Factor	User Response Time	Device Size	Display Size	Position Accuracy	Actuation Capability	Structure Integrity	Weight	Power
1. Portability	1		9	3			9	9	
2. Life Span	4	1			3	3	9	1	3
3. Control Method	5	9		3	9	9			3
4. Device Precision	4	1	3	9	9	9	3		1
5. User Interaction	4	9	1	3	9				
6. Device Size	1		9	3	3		9	9	1
Output Parameters	4			9	9	3			
8. Continuous Movement	5	1	3	1	9	9	1		3
9. Duration	6		1		3	9			3
Modularity	5		9		1		9	9	3
Raw Score: (1007)		94	100	110	236	204	116	67	80
Relative Weight %	ó	9%	10%	11%	23%	20%	12%	7%	8%
Rank Order		6	5	4	1	2	3	8	7

Team 515

2025

	Pugh Chart 1										
Engineering Characeristic	2024 REU Large-scale CVT	Concept									
Engineering Characeristic	Device	1	2	3	4	5	6	7	8		
User Response Time		+	+	+	-	+	+	+	+		
Device Size		+	+	+	+	+	+	+	+		
Display Size	E	-	+	-	-	-	+	-	+		
Position Accuracy		+	+	+	+	+	-	+	-		
Actuation Capability	Dath	+	-	+	S	S	-	+	-		
Structural Integrity	-	S	+	+	S	-	-	+	S		
Weight		-	-	-	S	-	-	-	S		
Power		-	-	S	S	-	-	S	S		
Total Pluses		4	5	5	2	3	3	5	3		
Total	Minuses	3	3	2	2	4	5	2	2		

Pugh Chart 2									
En ala costa a Chomo costatio	Concert 4	Concept							
Engineering Characeristic	Concept 4	1	2	3	7	8			
User Response Time		+	+	+	-	+			
Device Size	Ē	S	S	S	S	S			
Display Size		+	S	-	S	-			
Position Accuracy		S	-	+	-	-			
Actuation Capability	Dati	S	-	+	-	-			
Structural Integrity	-	+	+	S	+	+			
Weight		-	+	-	+	+			
Power		+	-	S	-	+			
Total Pluses		4	3	3	2	4			
Total N	Total Minuses			2	4	3			

Pugh Chart 3				
Engineering Characeristic	Concept 2	Concept		
	Concept 2	1	3	8
User Response Time		+	-	-
Device Size		S	S	S
Display Size		S	S	S
Position Accuracy	E	+	S	-
Actuation Capability	Datum	+	+	-
Structural Integrity	I	S	+	S
Weight		+	+	S
Power		-	S	+
Total	4	3	1	
Total Minuses		1	1	3

Criteria Comparison Matrix [C]						
	Material Cost	Manufacturing Cost	Repairability	Durability	Reliability	Time to Produce
Material Cost	1.00	0.33	0.2	3	9	1
Manufacturing Cost	3.00	1.00	0.33	5	9	1
Repairability	5.00	3.00	1.00	7	9	3
Durability	0.33	0.20	0.14	1.00	7	0.2
Reliability	0.11	0.11	0.11	0.14	1.00	0.11
Time to Produce	1.00	1.00	0.33	5.00	9.00	1.00
Sum	10.44	5.64	2.12	21.14	44	6.31

Normalized Criteria Comparison Matrix [NormC]							
	Material Cost	Manufacturing Cost	Repairability	Durability	Reliability	Time to Produce	{W}
Material Cost Manufacturing	0.096	0.059	0.094	0.142	0.205	0.158	0.126
Cost	0.287	0.177	0.156	0.237	0.205	0.158	0.203
Repairability	0.479	0.532	0.472	0.331	0.205	0.475	0.416
Durability	0.032	0.035	0.067	0.047	0.159	0.032	0.062
Reliability	0.011	0.02	0.052	0.007	0.023	0.017	0.022
Time to Produce	0.096	0.177	0.157	0.237	0.205	0.158	0.172
Sum	1	1	1	1	1	1	1

Consistency Check				
{Ws}=[C]{W} Weighted Sum Vectors	{W} Criteria Weights	Cons={Ws}./{W} Consistency Vectors		
0.832	0.126	6.603		
1.398	0.203	6.887		
2.803	0.416	6.738		
0.392	0.062	6.323		
0.133	0.022	6.045		
1.148	0.172	6.674		
	Average Cons (λ)	6.55		

Final Rating Matrix					
	Concept 2	Concept 1	Concept 3		
Material Cost	0.6	0.2	0.2		
Manufacturing Cost	0.6	0.2	0.2		
Repairability	0.429	0.143	0.429		
Durability	0.429	0.429	0.143		
Reliability	0.6	0.2	0.2		
Time to Produce	0.429	0.143	0.429		

Alternative Value Matrix			
Alt. Value			
Concept 2	0.489		
Concept 1	0.181		
Concept 3	0.331		
Sum	1		

References

OpenAI. (2024). ChatGPT (May 2024 Version) [Large language model].

https://chat.openai.com/chat

Moebs, W., Ling, S. J., & Sanny, J. (2016). 6.2 Friction. In University Physics Volume I.

OpenStax. https://openstax.org/books/university-physics-volume-1/pages/6-2-friction

Ordonez, C. (2024). Mobile Robotics: Sensors. Tallahassee; FAMU-FSU College of

Engineering.

Team 515

2025

SE1 compact string pot • incremental encoder - te connectivity. (n.d.).

https://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=D

ata+SheetSE1ApdfEnglishENG_DS_SE1_A.pdfCAT-CAPS0071

2025